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|
What is ROS ?

ROS is the game of Random inhomogeneities in an Overdetermined Solvable linear system.

Game: ROS;(\):
p s Pgen(1%)

((ﬁz‘)ie[z+1],C> g AHROs (p)
return (W #5,0i # Pj N{(pi,c) = HROS(ﬁi))

@ Pgen a prime generator with [log,(p)] = A
@ p;,ce Zi,

@ HRros a random oracle with image in Zj

@ AHros a probabilistic poly()) time adversary.
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ROS Attack for I > X\

ROS Attack

Theorem [2020] (ROS-attack)

for [ > A
ROS;()) is easy

Where hard means that for every adversary in poly(\) time

P[ROS;(A) = 1] = A~

@ Let p=po+ Xt pixi € Lplrr, - ,zy] and p= (p1,--,p) € z.,
See thatcEZi,

p(e) = (p,e) — po
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ROS Attack for I > X\

ROS Adversary (1)

® Fori=1,---,l, b={0,1}

@ If 3i* such that c?* = c}*

return (59, - -

@ Otherwise, define

we have that f;(c?) = b.
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pl =2z,

b =27 PHgos(p?)

:ﬁ?vﬁzl*) and ¢ = (c(l)z"'

xlfc?
fi=71—2
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ROS Attack for I > X\

ROS Adversary (2)

!
Let pig =y 2'7'f; y = Hros(P141) + pi+1(0).
=1

@ See y in binary as
l

y = ZQi_lbi mod p

=1
® retun (', ,p pry1) and € = (¢}, )
@ Thoses are valid solutions:
- fori=1,---,1, (ps,c) = 2% PiHgos(p?) = Hros(p?).
5 i— b _
- (P41, €) = pryi(e) — pry1(0) = L) 2075 () — prya(0) =

=3t 27 — 111 (0) =y — p141(0) = Hros(Pr41)-
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Wagner's ROS Attack

Theorem [2002] (Wagner's ROS Attack)
for any I, 3 A an adversary that wins ROS;()) using:
time: O((I + 1)2)\/(1+L10g2(l+1)J))
memory : O(log, (I + 1)2/\/(1+Uog2(l+1)J))

v
This is sub exponential but slowly distantiates itself from O(2*). For example, taking
1=2Y>_1 itisin time O(22V2).
This adversary relies on another math problem: the k-sum problem.
EPFL
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k-sum problem
k-list problem

Definition (k-list problem in a group G)
Let £1,---, Lk be random lists of element in G and let H C G. The k-list problem consists in
finding x; € L; such that

1 +x2+ - +xx €H

If |H| =1, this is called the k-sum problem. This is a generalisation of the birthday paradox
problem.

It is a fundamental problem in cryptography

Theorem [2001] (Wei Dai)

If the k-sum problem over a cyclic group G = (g) can be solved in time O(t), then the discrete
log with respect to g can be found in time O(t).
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Jo-sum problem
Wagner's ROS-Attack

Consider

M; = {pi = piTi|p; € Z;} and corresponding lists £; = {ci = p;lHRos(pi)\pi € Mz}

@ Let p;41 =(1,---,1). Solve the k-sum problem for

(Pry1,(c1, -+ ,c))=c1+ca+---+c =Hros(Pr41),¢i € Li

@ return (ﬁ17'“ 7ﬁl7ﬁl+1) and ¢ = (617"' 7Cl)'

So, the question is: “do we have a quick algorithm for k-sum in Z, 7"

1G]
@ Sadly k-sum is in time Q(27% ),

@ however, fascinating algorithms exist.
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k-sum problem
Wagner's k-list algorithm (1)

£y
/'X]\
L3 L3
> >
7N 7N
‘Cwlfl Lw.fl Lw'—l
1 2 ow—1
> > >
/N /N /N
LY Ly LY LY LYo 4 LS.
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Je-sum problem
Wagner's k-list algorithm (2)

- -1 p-1
Let H be any interval of Zp. w.l.o.g, we see Z, = [-P5=, P5=] and H C [ L2wL+1J L2wL+1H

Let 1y = 11, 1 = | - | 55w ) s [ i = 00w

Algorithm: k-list({£~}[ow)): with |£¢] = 2T
for i = w downto 1 do
for j € [2°71] do
‘ Léilz{a+b|aEEéj_l,beEéjﬂl‘i‘be[i,l}
end
end
if L0NT_1 = then
| return L
end
return (l1,~~~ ,ln), Lh4leo+ - +lp=s€l 1

Wagner's conjecture: Provided < 2L with w, L optimal approximation of H, this k-list

\H\
algorithm on 2¢ lists of 2~ uniformly random elements in Zyp has constant failure probability.
EPFL
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J-sum problem
Wagner's k-list algorithm (3)

@ 1 denote the merging of the two lists, using a Hash-joint / Merge-sort.

£y Clp

T

1 2 ch
> >
FAERN 7%
E{fil Lgfl ,C‘;w_71 Cl,—1
) ) A
> > >
/N /N VAR
Eulu £L2n1 £§; EZJ E‘é"w71 ,C;L; g Iw

time : O(2vtL)

memory : O(w2F)
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ROS Generalised Attack
ROS Generalised Attack

Theorem [2020] (ROS Generalised attack)
For I < A, 3A an adversary that wins ROS;()) in an efficient sub exponential. J

For I > max {2% —1,[2% —1+4 X — (w+ 1)L]}, the adversary runs in :

time : O(29+E)

memory : O(w2)
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ROS Generalised Attack
ROS Generalised Attack idea

0 let k1 = 2% — 1, k2 = max(0, |—)\ —(w+ 1)L1), set kK = k1 + ko.
© Run ROS-attack on Zyk, C Zp.

e Run Wagner's k-list attack on k1 + 1 = 2% with lists of size 2% to find a 2¢-list solution
in Zoks -
2Fk2

@ Merge both solutions. ( See details in appendix ).
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ROS Generalised Attack
ROS Generalised Attack in action

287
270
g 2%
8
-4
g
Z e
21!7 A
2 3
50 100 150 200 250
Open sessions (£)
A l time memory
Brute force | 256 | 197 212 2128
WROSA 256 | 197 239 7.252
ROSGA 256 | 197 220 5.215
WROSA 512 | 253 27T 7.252
ROSGA 512 | 253 253 6-246
WROSA 512 | 513 260 7.253
ROSGA 512 | 513 | poly(A) | poly()\)
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Schnorr's Blind Signature
Schnorr blind signature (SBS) protocol [2001]

U

T g Zp
R:G

=

a,ﬁ(—$ Zp
R=R+aG+BX

c¢c= H(R,m)

c=c+p

o1

[l

Check 3G ==¢X + R
s=5+«
return(R, s)

i valid signature if sG = R+ ¢X ]

@ X =2zG
@ @ generator of G, group of order p
@ H a hash fonction.
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Schnorr's Blind Signature
SBS attack using ROS

Theorem [2001] (SBS attack using ROS)

Given [ the number of parallel section doable using SBS.
Given A an adversary of ROS;(\) that wins in time O(t).

@ We can construct an adversary B that breaks UFKMA(SBS) in time O(t).

Corollary [2020]

If I > logy(p)
UFKMA(SBS) is insecure

If I <logy(p), it is sub exponential breakable.

EPFL
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Schnorr's Blind Signature
SBS attack using ROS

Let m1,--- ,m; be arbitrary messages, m;4; be the desired forged message.
@ Get R = (R1,---, R;) by opening [ parallel sessions with the server (fixed x).
@ Using A, get p1,...,p141,C € Zi,, such that

!

Vi=1,---,14+1, (pi,c> ZH(RZ,m-L) with R; :Zpi,jﬁj
j=1
@ Send C; = ¢; as an answer to R; to the server and get § = (51, -- ,57).

@ Fori=1,---,l+ 1 define s; = 22:1 Pi,jS;

@ Fori=1,---,l+ 1 return (R;,s;) as signatures for m;. Those are valid. Indeed

l

! ]
5iG = pi;8;G= (Zpi,j(c_jfﬁ + Tj)>G = (pi,c)zG+ > _ pijriG=c;iX +R;
j=1 j=1 j=1
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Other signature schemes affected
Other signature schemes affected (1)

Okamoto-Schnorr blind signatures

Okamoto-Schnorr blind signatures are of the form (R, s,t) such that sG +tH — cX = R.
generators of G.

It was proven that for [ < log (p), UFKMA(OSBS) is secure?
Now, for I > logs(p), UFKMA(OSBS) is insecure

?where Q is the number of queries to Hros
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Other signature schemes affected
Other signature schemes affected (2)

@ CoSi is a multi-signature scheme with signatures (c, s) such that ¢ = H(sG — cpk, m).

If I > log,(p), UFKMA-(CoSi) is unsecure

Threshold signature scheme like GJKR07 was! also insecure for [ > log,(p).

Partially blind signatures like Abe-Okamoto.

Every cryptosystem whose security is based on ROS is potentially at risk!

1 .
this attack has now been fixed
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Other signature schemes affected
Conclusion

@ We have a polytime attack on ROS;()) for I > A
@ A good subexponential attack on ROS;(X) for I < A
@ Many signature schemes are no longer secure.

@ Always be cautious about parallel sessions !
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Other signature schemes affected
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o
Appendix: ROS Generalised Attack proof (1)

@ letky =2% —1, ko = max(O, [)\ — (w+ 1)L]), set | = ky + ko.
@ Vi€ [ke], b=0,1 we define

pi = 2%x; c? =27"Hros (p)

@ If 3i* such that ¢ = =c}., set p; = xl, ¢; = Hros(pi) for i € [ka + 1,1]
return (P9, P}, Pryt1, 5 PL Py and (e, er)
@ Otherwise, define

o _ 0
£ = 331 CZ)
c; — ¥
ko
i—1
pry1 =D 27 i+ {2(w+1)L+1J Z T
i=1 i=ko+1
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o
Appendix: ROS Generalised Attack proof (2)

@ Fori=ko+1,---,14+1

Hi(a) = a~YHgos(p) with p = az; if i € [k2 + 1,1
¢ o 1Hros(p) — Pi41  with p=apip1 ifi=1+1

@ Getp; .y, *+,pjy, by running k‘—“st({Hi([QL])}ie[kl—O—l]).

define pt = { L% i€ k2 +1,1]
pi PP+ i=1+1

* * (p%)ilHROS(ﬁ*) 1€ [k2+1vl]
;= H;(p;) = 4 — ok = .
Y; (pz) { (pl+l) IHROS(PZ+1)—PZ+1 =141

l
s=2 € {_ b(wp;)flﬁlJ’ b(wp;)iﬂJ
kot1

p—1 b2 i—1
See s + {WJ :ZQI— b;

=1
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Appendix: ROS Generalised Attack proof (3)

b .
defi p; = P; RS [1:k2]
eine {,3; i€ ko +1,0+1]

e L ek
‘ yr i€k + 1,1

@ return (p1, -+, p141) and (c1,---,cp).
Thoses are valid solutions.
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o
Appendix: ROS Generalised Attack proof (4)

b, Ab; .
oy _ ] pi(c )_Qb‘CZ = Hros(p;') i€ [1,k2]
i) = { p*(¢) = Hros(57) i€ ko + 1,1

(Pr41,¢) = pry1(c) — p1y1(0)

ko l
1 p—1 _
= 1( 2i— f; (C \;WJ - Z Ci — pl+1(0))
i=1 i=ko41
ko
— 1—1
= 1( 2 b; WJ Z yz pl+1 )
i=1 i=ko+1
l
= Pl+1 (5 Z Y — P 0))
i=kg+1
= i1 (Wi — P141(0)
= Hros(h711)
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